首页> 外文OA文献 >Recurrent Neural Network Based Modeling of Gene Regulatory Network Using Bat Algorithm
【2h】

Recurrent Neural Network Based Modeling of Gene Regulatory Network Using Bat Algorithm

机译:基于递归神经网络的基因调控网络建模   蝙蝠算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Correct inference of genetic regulations inside a cell is one of the greatestchallenges in post genomic era for the biologist and researchers. Severalintelligent techniques and models were already proposed to identify theregulatory relations among genes from the biological database like time seriesmicroarray data. Recurrent Neural Network (RNN) is one of the most popular andsimple approach to model the dynamics as well as to infer correct dependenciesamong genes. In this paper, Bat Algorithm (BA) is applied to optimize the modelparameters of RNN model of Gene Regulatory Network (GRN). Initially theproposed method is tested against small artificial network without any noiseand the efficiency is observed in term of number of iteration, number ofpopulation and BA optimization parameters. The model is also validated inpresence of different level of random noise for the small artificial networkand that proved its ability to infer the correct inferences in presence ofnoise like real world dataset. In the next phase of this research, BA based RNNis applied to real world benchmark time series microarray dataset of E. coli.The results prove that it can able to identify the maximum number of truepositive regulation but also include some false positive regulations.Therefore, BA is very suitable for identifying biological plausible GRN withthe help RNN model.
机译:对于生物学家和研究人员而言,正确推断细胞内部的遗传调控是后基因组时代的最大挑战之一。已经提出了几种智能技术和模型来识别生物数据库中基因之间的调控关系,例如时间序列微阵列数据。递归神经网络(RNN)是最流行和最简单的方法之一,用于对动力学进行建模以及推断基因之间的正确依赖性。本文应用蝙蝠算法(BA)对基因调控网络(GRN)的RNN模型的模型参数进行优化。最初,该方法是在没有任何噪声的情况下针对小型人工网络进行测试的,并从迭代次数,种群数量和BA优化参数方面观察了效率。该模型还针对小型人工网络验证了不存在不同级别随机噪声的存在,并证明了该模型能够在存在噪声的情况下(如现实世界数据集)推断出正确的推断。在本研究的下一阶段,基于BA的RNN被应用于现实世界中的大肠杆菌基准时间序列微阵列数据集,结果证明它能够识别出最大的正阳性调控数量,但还包括一些假阳性调控。 BA非常适合借助帮助RNN模型来识别生物似的GRN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号